Abstract
Abstract The sweeping jet (SJ) film cooling hole has shown promising cooling performance compared to the standard shaped hole in low-speed conditions. The present work demonstrates the first attempt of SJ film cooling at an engine relevant Mach number. An experimental investigation was conducted to study the SJ film cooling on a nozzle guide vane suction surface. A well-established additive manufacturing technique commonly known as stereolithography (SLA) was utilized to design a transonic, engine representative vane geometry in which a row of SJ holes was used on the vane suction surface. Experiments were performed in a linear transonic cascade at an exit Mach number of 0.8 and blowing ratios of BR = 0.25–2.23. The measurement of heat transfer was conducted with the transient IR method, and the convective heat transfer coefficient (HTC) and adiabatic film cooling effectiveness were estimated using a dual linear regression technique (DLRT). Aerodynamic loss measurements were also performed with a total pressure Kiel probe at 0.25Cax downstream of the exit plane of the vane cascade. Experiments were also conducted for a baseline-shaped hole (777-hole) for a direct comparison. Results showed that the SJ hole has a wider coolant spreading in the lateral direction near the hole exit due to its sweeping motion that improves the overall cooling performance particularly at high blowing ratios (BR > 1). Aerodynamic loss measurement suggested that the SJ hole has a comparable total pressure loss to the 777-shaped hole.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.