Abstract
Infrared thermography (IRT) is a non-destructive technique capable of detection and localisation of hidden subsurface defects in components of transportation infrastructure, such as concrete bridges, thereby contributing to structural health monitoring (SHM). Addressing the lack of research on subsurface defect detection in concretes by convection heat exchange, and regarding the importance of laboratory studies for proper implementation of IRT, this paper presents results from recent laboratory investigations of IRT on concrete slabs with simulated hidden defects using a convective thermal excitation mechanism. The concrete slabs in this study had simulated defects ranging 5–25 mm in depth from the surface. These studies show the effect of initial temperature, heating/cooling process, temperature range and defect depth on thermal contrast in the concrete slabs. Furthermore, this paper compares the performance of the IRT as a non-contact sensor and thermocouples attached to the surface, in the evaluation of the thermal contrast on slabs with various defect depth. The dependence of maximum thermal contrast on the initial temperature and defect depth is explored using multivariate linear regression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.