Abstract

Recently, the Solar-hydrogen energy system (SHES) becomes a reality thanks as well as a very common topic to energy research in Egypt as it is now being the key solution of different energy problems including global warming, poor air quality and dwindling reserves of liquid hydrocarbon fuels. Hydrogen is a flexible storage medium for energy and can be generated by the electrolysis of water. It is more particularly advantageous and efficient when the electrolyzer is simply coupled to a source of renewable electrical energy. This paper examines the operation of alkaline water electrolysis coupled with solar photovoltaic (PV) source for hydrogen generation with emphasis on the electrolyzer efficiency. PV generator is simulated using Matlab/Simulink to obtain its characteristics under different operating conditions with solar irradiance and temperature variations. The experimental alkaline water electrolysis system is built in the fluid mechanics laboratory of Menoufiya University and tested at certain input voltages and currents which are fed from the PV generator. The effects of voltage, solution concentration of electrolyte and the space between the pair of electrodes on the amount of hydrogen produced by water electrolysis as well as the electrolyzer efficiency are experimentally investigated. The water electrolysis of different potassium hydroxide aqueous solutions is conducted under atmospheric pressure using stainless steel electrodes. The experimental results showed that the performance of water electrolysis unit is highly affected by the voltage input and the gap between the electrodes. Higher rates of produced hydrogen can be obtained at smaller space between the electrodes and also at higher voltage input. The maximum electrolyzer efficiency is obtained at the smallest gap between electrodes, however, for a specified input voltage value within the range considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.