Abstract

In the present work, we present a method to gather highly accurate three-dimensional measurements of a scalar field in order to experimentally validate the theory of dissipation elements as developped by Wang & Peters (2006, 2008). Combining a two-dimensional high-speed Rayleigh scattering technique with Taylor's hypothesis allows to resolve the concentration field of gaseous propane discharging into ambient air from a turbulent round jet at a Reynolds number (based on nozzle diameter and exit velocity) of 2,800 down to the Kolmogorov scale in every spatial direction. Based on the acquired data, the normalized probability density function of the length of dissipation elements P̃(l̃) is investigated at various downstream positions x/d = 15 − 40 and an excellent agreement with the theoretically derived model equation is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.