Abstract

SummaryThroughout history, dry‐stone masonry structures have been strengthened with different types of metal connectors in order to increase their resistance which enabled their survival, especially in the seismically active area. One such example is the ancient Protiron monument placed in the Peristyle square of the Diocletian's Palace in Split, Croatia. The Protiron was built at the turn of the 3rd century as a stone masonry structure with dowels embedded between its base, columns, capitals and broad gable. The stone blocks in the broad gable were connected by metal clamps during restoration at the beginning of the 20th century. In order to study the seismic performance of the strengthened stone masonry structures, an experimental investigation of seismic behaviour of a physical model of the Protiron was performed on the shaking table. The model was designed as a true replica model in a length scale of 1:4 and exposed to representative earthquake with increasing intensities up to collapse. The tests provided a clear insight into system behaviour, damage mechanism and failure under intensive seismic load, especially into the efficiency of connecting elements, which had a special role in increasing seismic resistance and protection of the structure from collapse. Additionally, this experiment provided valuable data for verification and calibration of numerical models for strengthened stone masonry structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call