Abstract

PurposeNatural good-quality sources of aggregates are depleting, whereas large amount of reclaimed asphalt pavement (RAP) is produced annually. Safe disposal and use of RAP in the cold in-place recycling (CIR) using foamed bitumen could be sustainable approach where milling and mixing operations are accomplished simultaneously. This will not only help in minimizing contamination (probability) and transportation cost but also reduces the carbon footprints. Therefore, this study aims to investigate the scope of RAP utilization up to 100% and further its effect on the behavior of reclaimed asphalt foamed bituminous mix.Design/methodology/approachReclaimed asphalt foamed bituminous mix (FBM) is still a new technique. The evidence of performance of 100% recycled pavement (CIR) is only anecdotal and lacks in systematic guidelines and literatures. Foam binder coating around the aggregates is also a concern. Therefore, this study is mainly emphasized to investigate the scope of RAP use in the FBM up to 100%. RAP content is varied in each trial, i.e. 70, 85, 100 and 0% (only fresh aggregates), to make the FBM. RAP use and its effect on the behavior of FBM in terms of resilient modulus, variation in resilient modulus with curing, rutting performance and the potential of resistance against the moisture damage are addressed.FindingsConsidering the laboratory studies, it can be accomplished that mechanistic properties and performance of FBM are largely influenced by RAP material and portray less susceptible characteristics against the moisture damage. FBM containing 70% RAP content exhibits maximum resilient modulus. However, use of RAP up to 100% in FBM is satisfying the minimum required specification.Originality/valueOverall, the study may be helpful to highway professionals and could generate another possible option of 100% RAP replacing fresh aggregates in the flexible pavements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.