Abstract

Growing application and use of ceramic foams has intensified the necessity to determine a precise and inexpensive method for prediction of pressure drop through these materials. In this paper, a new experimental model is presented for pressure drop through ceramic foams. In order to measure pressure drop, a set up was made in which air flow rate and temperature varied. Effects of variation in temperature and flow velocity on the pressure drop were investigated through open-cell SiC and Al2O3 foams with different values of porosity and pore density. Results of this study revealed the leading role of parameters such as viscosity, porosity, density, velocity and mean hydraulic diameter of pores of foam. Since there are several parameters affecting the problem, dimensional analysis was adopted as a convenient approach. Euler number, porosity and two Reynolds numbers, one based on the pores’ diameter and the other one based on total bed length, have been shown to be important in the analysis. Finally, an empirical model is developed for the pressure drop which is based on dimensionless numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call