Abstract
In an effort to challenge the Copenhagen interpretation of quantum mechanics, Karl Popper proposed an experiment involving spatially separated entangled particles. In this experiment, one of the particles passes through a very narrow slit, and thereby its position becomes well-defined. This particle therefore diffracts into a large divergence angle; this effect can be understood as a consequence of the Heisenberg uncertainty principle. Popper further argued that its entangled partner would become comparably localized in position, and that, according to his understanding of the Copenhagen interpretation of quantum mechanics, the ‘mere knowledge’ of the position of this particle would cause it also to diffract into a large divergence angle. Popper recognized that such behavior could violate the principle of causality in that the slit could be removed and the partner particle would be expected to respond instantaneously. Popper thus concluded that it was most likely the case that, in an actual experiment, the partner photon would not undergo increased diffractive spreading and thus that the Copenhagen interpretation is incorrect. Here, we report and analyze the results of an implementation of Popper’s proposal. We find that the partner beam does not undergo increased diffractive spreading. Our work helps to clarify the issues raised in Popper’s proposal, and it provides further insight into the nature of entanglement and its relation to the uncertainty principle as applied to correlated particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.