Abstract

Spectral splitting technology can prevent a photovoltaic cell (PV) overheating ability and efficiency loss. The solar spectrum is split into two portions using this technology: the first produces electricity, while the second generates heat. The present research offers the design and performance evaluation of a novel PV-thermal (PV/T) system based on a compound parabolic concentrator (CPC) and a selective absorptive fluid-based optical filter. Different experiments are conducted to indicate the impact of 1, 3, and 5 cm air gaps between the optical filter and PV on the system's average outputs. In addition, the impact of tilting the solar concentrator on the system's performance was also investigated. Finally, a simulation of the cell's electrical performance was produced. Experimental findings demonstrated that all CPC-PV systems with an optical filter have a greater electrical efficiency of about 17% compared to 13.1% and 7.1% for no-filter CPC-PV systems and bare PV cells, respectively. The 3-cm air gap case also demonstrated the most significant electrical, thermal, and overall efficiency improvements, with average values of 17.1, 21.0, and 32.8%, respectively. Additionally, the inclined position of the CPC outperforms the horizontal position. Theoretical results, in terms of electrical performance, supported the experimental findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call