Abstract

While electric and hybrid vehicles do act as credible replacement option for diesel engines, reality is that they will not replace it anytime soon. This leaves consumers with no choice but to prefer a diesel car over the other options. In addition, diesel engines are notorious for the emissions they emit which cause damage to health and the environment. This calls for urgency of action on emissions of diesel engine till the other viable options become better. Another major problem is the shortage of conventional fuels, especially diesel. In the present work, biodiesel derived from waste cooking oil has been employed as fuel along with ethanol (which serves as an oxygenated additive) and is considered for investigation. A Kirloskar made TV2 diesel engine has been employed to conduct the experiment at varied load. In this experiment, diesel has been considered as baseline reading, and two other fuels, that is biodiesel and biodiesel+ ethanol, have been considered for comparison purpose. The engine has been run from 0 to 100% load using the three fuels and the results have been evaluated, tabulated and plotted on graphs for discussion. From the results, it is revealed that the brake thermal efficiency (BTE) is increased by nearly 10% and brake-specific fuel consumption (BSFC) has reduced by 12%, thus showing that the performance of the engine is improved. The emissions of carbon monoxide (CO), nitrogen oxide (NOx) and particulate matter (PM) have significantly reduced; especially NOx has reduced by nearly 30%. There is also improvement of combustion with the heat release rate (HRR) increasing by nearly 15% and introduction of ignition delay. Exhaust gas recirculation (EGR) has also been used. EGR provides the best results when used as an after exhaust treatment system and is detrimental to NOx formation which is the most notorious emissions from a diesel engine and the results gotten from it were promising. Thus by employing this additive, the emissions are decreased without penalizing the performance and combustion characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call