Abstract

The Pebble Bed Modular Reactor (PBMR) is a type of very-high-temperature reactor (VHTR) that is conceptually very similar to moving bed reactors used in the chemical and petrochemical industries. In a PBMR core, nuclear fuel is in the form of pebbles and moves slowly under the influence of gravity. In this work, an integrated experimental and computational study of granular flow in a scaled-down cold flow PBMR was performed. A continuous pebble re-circulation experimental set-up, mimicking the flow of pebbles in a PBMR was designed and developed. An experimental investigation of pebble flow dynamics in a scaled down test reactor was carried out using a non-invasive radioactive particle tracking (RPT) technique that used a cobalt-60 based tracer to mimic pebbles in terms of shape, size and density. A cross-correlation based position reconstruction algorithm and RPT calibration data were used to obtain results about Lagrangian trajectories, the velocity field, and residence time distributions. The RPT technique results a serve as a benchmark data for assessing contact force models used in the discrete element method (DEM) simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call