Abstract

Dams and hydraulic structures are built on rivers in order to protect water resources due to global warming, to collect surface waters to provide drinking water and/or irrigation water, to prevent floods and to establish hydroelectric power plants. Dams, for example, are hydraulic structures that have more or less positive or negative environmental interactions on surface water and groundwater. One of the environmental interactions of dams and similar hydraulic structures is the seepage of accumulated water in its reservoir from upstream bottom of the dam. This seepage can affect the level and location of groundwater, reduce the accumulation of water in the reservoir, and cause piping in the ground below the construction of the dam body. In order to control the seepage, the methods of increasing the seepage length by using sheet pile and clay blanket on the dam foundation are frequently used. In this study, in the physical laboratory model, the variations in the seepage lengths that occur under the hydraulic structure section in the soil with two different grain diameters of 0.85 mm and 1.5 mm, depending on the dam structure, soil and barrier structures (sheet pile and upstream clay blanket), were experimentally investigated. As a result, it was determined that the seepage occurs less in the soil with a smaller grain diameter of 0.85 mm, the smaller the soil particle diameter has a reducing effect on the seepage, and the use of sheet pile increases this effect positively. In addition, it has been determined that the clay blanket in the upstream is effective compared to the general conditions, but the use of sheet pile provides the most efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call