Abstract
Artificial roughness has been found to enhance the heat transfer from the collector plate to the air in a solar air heater. However, it would result in increase in frictional losses and hence, power required by fan or blower. This paper presents the results of an experimental investigation of thermohydraulic performance of roughened solar air heaters with metal rib grits. The range of variation of system and operating parameters is investigated within the limits of, e/ D h: 0.035–0.044, p/ e: 15–17.5 and l/s as 1.72, against variation of Reynolds number, Re: 3600–17000. The study shows substantial enhancement in thermal efficiency (10–35%), over solar air heater with smooth collector plate. The thermal efficiency enhancement is also accompanied by a considerable increase in the pumping power requirement due to the increase in the friction factor (80–250%). The optimum design and operating conditions have been determined on the basis of thermohydraulic considerations. It has been found that, the systems operating in a specified range of Reynolds number show better thermohydraulic performance depending upon the insolation. A relationship between the system and operating parameters that combine to yield optimum performance has been developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.