Abstract

Fused deposition modeling (FDM) or 3D printing is one of the promising techniques widely preferred to fabricate complex and customized 3D objects or prototypes for various engineering and non-engineering applications. With the growing demands of customized prototypes, researchers are facing a major challenge for maintaining effective part quality with adequate surface finish and strength; and minimizing the cost, defects, and waste in 3D printing. Condition monitoring is one of the strategies to achieve the aforementioned. It has a huge potential to minimize defects and print failures in 3D printing. The main objective of this research work is to perform online condition monitoring of the nozzle status with the help of vibration signals in fused deposition modelling process. The effect of nozzle clogging on the consistency of material deposition and its effect on surface finish has experimentally investigated in this work. The set of experiments were performed by artificially creating the condition of nozzle clogging to investigate the effect of nozzle clogging on print quality (surface finish). Nozzle clogging condition was created by increasing the feed rate of polylactic acid (PLA) filament at a low heat supply rate to the nozzle by modifying the commands of 3D printer. The layer thickness was varied throughout the experiments to observe the nozzle clogging. The vibrations signals were acquired by using an accelerometer that was mounted near the nozzle. The data acquisition frequency of the accelerometer was 12500Hz. Further, the acquired vibration signals were analyzed using the Fast Fourier transformation (FFT) signal processing technique. Results revealed that nozzle clogging severely affects surface quality and geometrical accuracy of the fabricated 3D part due to nozzle vibration and non-uniform material deposition. Moreover, nozzle clogging and its relevant consequences like non uniform material deposition can be monitored using vibration signal-based condition monitoring during part fabrication and based upon that appropriate measures can be taken for defects and waste elimination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.