Abstract

Nowadays, there is a growing inclination towards the environmentally friendly and economically viable materials in the field of chemical enhanced oil recovery including the surfactant flooding. This study investigates the performance of a newly developed anionic surfactant derived from peanut oil in enhanced oil recovery (EOR) applications. The validity of the formulated surfactant using the esterification and sulfonation methods was verified through FTIR, 1H NMR, and TGA analytical techniques. According to the outputs of conductivity and surface tension from developed surfactant solutions at 500 and 4000 ppm, the concentration of 2000 ppm was identified as the critical micelle concentration (CMC). Several experimental tests were applied on the surfactant solutions and more specifically at CMC range, such as IFT measurement, wettability estimation, foamability, oil displacement and emulsification. The surfactant solution at CMC (optimal surfactant solution) reduced the IFT from an initial value of 15.5 to 6.8 × 10−2 mN/m at the optimum concentration of formation water (15,000 ppm). Wettability alteration was examined on sandstone and carbonate rock samples, and the optimal surfactant solution successfully altered both rock surfaces from strongly oil-wet to water-wet, resulting in a decrease in contact angle from 144° to 58° on carbonate rock and from 138° to 44° on sandstone rock. In addition, the emulsion test results revealed a significant ability of the peanut surfactant to create emulsions. Examination of microscopic images demonstrated that the emulsion remained stable for approximately 90 days with a high compatibility under high saline conditions. Hence, the developed natural surfactant enabled to displace extra 19.3 % and 15.64 % original oil in place (OOIP) from the sandstone and carbonate core plugs, respectively, with shifting the relative permeability curves towards the lift side.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.