Abstract

Today, nanoparticles are used as additives because of their unique properties. The aim of the present research is to investigate the effect of the addition of TiO2 nanoparticles to pure oil on properties such as viscosity, viscosity index, flash point, density, friction coefficient and frictional force in the pin-on-disk system. For this purpose, the nanofluids were synthesized using turbine meter oil as a base oil and TiO2 additive with 0.05, 0.1, 0.2, 0.3, 0.4 and 1 mass% and oleic acid surfactants, followed by testing the mentioned properties. The results show that the kinematic viscosity of the oil is increased with increasing nanoparticles and reducing the temperature. Viscosity index and flash point temperature in 0.4 mass% were increased by 6.65% and 1.77%, respectively. The pour point temperature in 0.05–0.2 mass% was increased by 3%. A pin-on-disk system was used to measure the friction coefficient and the frictional force between the pin and disk in the presence of pure oil and nanofluids after 2 h of abrasion. The results showed that friction coefficient and frictional force were, respectively, decreased by 37.1% and 37.1% by adding 0.1 mass% of TiO2. The depth of the abrasive pins for 4 h was measured by the SEM analysis. The addition of TiO2 nanoparticles showed the lowest abrasion and the most improvement were related to 0.1 mass% TiO2 nanoparticles with a wear depth of 38.46 μm. Compared with turbine meter oil, it shows a 71.43% improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.