Abstract

We experimentally investigated near-perfect optical absorption in sandwich structures comprising a thin metallic film whose thickness is larger than the skin depth, a top dielectric layer and a truncated photonic crystal. Single and multiple near-perfect absorptions were realized by tuning the thickness of the top layer. Based on the electromagnetic field intensity distributions at the absorption wavelengths, single near-perfect absorption originated from the tunneling effect of the optical Tamm state, while multiple near-complete absorptions mainly originated from Fabry-Perot resonances. Additionally, the structures showed good one-way absorption properties. The experimental results agreed well with theoretical values. These structures may be important for the fabrication of single or multichannel perfect absorbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.