Abstract

SUMMARYA mapping and navigation system based on certainty grids for an autonomous mobile robot operating in unknown environment is described. The system uses sonar range data to build a map of the robot's surroundings. The range data from sonar sensor are integrated into a probability map that is composed of two dimensional grids which contain the probabilities of being occupied by the objects in the environment. A Bayesian model is used to estimate the uncertainty of the sensor information and to update the existing probability map with new range data. The resulting two dimensional map is used for path planning and navigation. In this paper, the Bayesian updating model which was successfully simulated in our earlier work is implemented on a mobile robot and is shown to be valid in the real world by experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.