Abstract
Ultra-precision machining of single crystalline sapphire was performed using a polycrystalline diamond (PCD) micro-milling tool. Examination of the machining characteristics indicates that a high-quality surface with a nanometre-scale surface roughness can be obtained when the removed chips are thin enough to achieve ductile-mode machining. Although a high-quality surface was successfully machined, the surface roughness gradually deteriorated and the actual depth of the machined groove became shallower as the machining distance increased because of the build-up of material adhering to the surface of the tool. To retain the milling capabilities of the PCD tool, an electrochemical-assisted surface reconditioning process has been proposed. The reconditioning technique was found to be effective in removing the surface contaminant without causing damage to the edges of the tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.