Abstract

The aim of this study was to experimentally investigate the effect of repeated low-velocity impacts on tensile strength of fiber metal laminates (FMLs) using instrumented drop weight impact tester. FMLs were fabricated layer by layer intercalating three layers of aluminum 6061 and two layers of glass fiber-reinforced epoxy. The FMLs were subjected to repeated low-velocity impacts (<10 m/s) at the same location on the FML. The degradation of mechanical property due to impact(s) was studied using Zwick UTM at distances of 0, 20, 40, and 60 mm from the impact point. Results indicate that ultimate tensile strength, failure strain, and ductility of all specimens initially decrease, and then remain constant with increase in number of impacts. A closer examination of impacted FML by scanning electron microscope indicates that thinning and shear fracture in aluminum layers, as well as delamination, and fiber failure in composites plies were present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call