Abstract

The post-impact spreading and recoil behaviors of droplets of pure liquids (water and ethanol) and aqueous solution of Triton X-100 (a surfactant) on a dry horizontal hydrophilic (glass) substrate are investigated for low Weber numbers. The evolution of drop shape during spreading and recoil are captured using a high-speed (4,000 frames per second) digital video camera. Digital image-processing was used to determine the spread and height of the liquid film on the surface from each frame. Unlike pure liquids, the liquid-gas interfacial tension for surfactant solution is a function of surface age, where surface tension is that of the solvent at zero time and then reaches an equilibrium value with increasing surface age. Furthermore, the equilibrium surface tension is a function of the surfactant concentration, which decreases from that of the solvent at zero concentration to that at the critical micelle concentration (CMC), and remains essentially constant thereafter. The surface tension of aqueous Triton X-100 solution varies from that of pure water to nearly that of ethanol. As such the comparison of transient droplet-impact-spreading-recoil behavior of the three liquids, or their temporal variations of the spread and the flattening factor, provides a basis for understanding the role of dynamic surface tension and surface wettability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.