Abstract

Rotational Molding is a plastic manufacturing process mainly implemented to produce stress free hollow products. Linear Low Density Polyethylene (LLDPE) is widely preferred as base resin for molding roto molded product, but it displays moderate value in some critical applications where strength is the major criteria. Additives can fill the gap in sustaining the necessary strength needed. In the present work, an attempt has been made to analyze the optimum percentage of coir reinforced with LLDPE for rotational molding technique to provide requisite processability for rotational molding process. Coir in its powder form is mixed at concentrations varying in the range of 3% to 20% with respect to LLDPE. In order to justify the prerequisite of processability for rotational molding, various experiments namely FTIR, MFI, rheology and thermal analysis were conducted. FTIR suggested the range of 5% to 15% wherein the significance of LLDPE and coir peaks can be observed. MFI test supported FTIR result which ended in considering 3% to 12% by weight ratio suitable in terms of flow ability. Rheological and thermal analysis subjecting to shear and heat parameter respectively, confirmed the range of 10 weight percentage of coir or below is suitable in terms of material processability. From the experimental results, it is concluded that 10% or less concentration of coir fiber in LLDPE as an optimum range of blend yielding better processability for rotational molding process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.