Abstract
The average heat transfer coefficient is determined between the fluidizing bed and horizontal tube surface immersed in the bed of large particles. The mustard (dp=1.8mm), raagi (dp=1.4mm) and bajara (dp=2.0mm) were used as particles in the bed. The effect of fluidizing gas velocity on the heat transfer coefficient in the immersed horizontal tube is discussed. The results obtained by experiment are compared with correlations and artificial neural network modeling. The parameters particle size, temperature difference between bed and immersed surface were used in the neural network modeling along with fluidizing velocity. The feed-forward network with back propagation structure implemented using Levenberg–Marquardt’s learning rule in the neural network approach. The network’s performance tested with regression analysis. The predictions of the artificial neural network were found to be in good agreement with the experiment’s values, as well as the results achieved by the developed correlations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.