Abstract

We experimentally investigate the quantum-correlated twin beams generated through stimulated nondegenerate four-wave mixing in the double-lambda atomic system. A 2.5-dB noise reduction of intensity difference with 18.4-GHz frequency difference at the cesium ${D}_{1}$ line is observed in a Cs vapor cell. The quantitative theoretical analysis reveals the experimental difficulty in getting high quantum correlation in Cs atoms because of the large hyperfine splitting of the ground states. However, it is favorable for obtaining quantum correlation in a wide range of pump detunings and relative long lengths of vapor cells. This quantum correlation provides a potential resource for possible coherent interfaces between atomic and solid-state systems due to its wavelength at the Cs ${D}_{1}$ line which lies well within the wavelength regime of the exciton emission from InAs quantum dots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.