Abstract
Abstract The formation of stable heavy oil emulsion, which may upset separation facilities and eventually lead to production impairment, is one of the most common issues encountered in the development of heavy oil reservoirs. This paper investigates the influence of various physicochemical parameters, including water cut, polymer status (sheared/unsheared), polymer concentration, demulsifier type and concentration, and the coexistence of polymer and demulsifiers on the stability of heavy oil emulsion. The viscosity of heavy oil emulsion is also studied at various water cut and polymer concentration. In this study, water-in-heavy oil emulsion was prepared at the water cut of 30% as the blank sample using heavy oil with API gravity of 14.5° and the synthetic brine. The effect of the water cut was investigated by both the bottle test method and multiple light scattering (MLS) method to validate the effectiveness and reliability of the MLS method. The other parameters were studied only through the MLS method. The results showed that the increasing water cut resulted in the decrease of heavy oil emulsion stability and could potentially invert the stable w/o emulsion to loose o/w emulsion at the phase inversion point where the emulsion viscosity peak occurred. Adding polymer, regardless of the polymer status, tended to reduce the stability of heavy oil emulsion, and the unsheared polymer contributed to less emulsion stability. However, the influence of polymer concentration was rather complicated. The emulsion stability decreased as polymer concentration increased, and further increasing polymer concentration enhanced the emulsion stability. A similar trend was also evidenced by emulsion viscosity with increasing polymer concentration. The addition of three oil-soluble emulsion breakers was able to break the heavy oil emulsion efficiently, whereas the water-soluble demulsifier had little demulsification effect. Furthermore, there existed an optimal concentration for the selected oil-soluble demulsifier to achieve the maximum separation. Although polymer itself could intensify the destabilization of heavy oil emulsion, it hindered the destabilization process of the heavy oil emulsion when the oil-soluble demulsifiers were added. This study will provide a comprehensive understanding of the factors affecting heavy oil emulsion stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.