Abstract
To achieve higher overall efficiency in gas turbine engines, hot gas path components are subjected to high heat transfer loads due to higher turbine inlet temperatures. Jet impingement has been extensively used especially as an internal cooling technique in the leading edge and mid-chord region of first stage vanes, which are subjected to highest heat loads. With the advent of additive manufacturing methods such as Direct Metal Laser Sintering (DMLS), designers are not limited to designing round or race track holes for impingement. The present study is focused on exploring new jet hole shapes, in an arrangement, typical of mid-chord region in a double wall cooling configuration. Transient liquid crystal experiments are carried out to study heat transfer augmentation by jet impingement on smooth target where the spent air is allowed to exit in one direction, thus imposing maximum crossflow condition. The averaged Reynolds number (based on jet hydraulic diameter) is varied from 2500 to 10000. The jet plate has a square array of jets with 7 jets in one row (total number of jets = 49), featuring hole shapes — Racetrack and V, where the baseline case is the round hole. The non-dimensional streamwise (x/dj) and spanwise (y/dj) spacing is 6 and the normalized jet-to-target-plate spacing (z/dj) is 4 and the nozzle aspect ratio (L/dj) is also 4. The criteria for the hole shape design was to keep the effective area of different hole shapes to be the same, which resulted in slightly different hydraulic diameters. The jet-to-target plate spacing (z) has been adjusted accordingly so as to maintain a uniform z/dj of 4, across all three configurations studied. Heat transfer coefficients are measured using a transient Liquid Crystal technique employing a one-dimensional semi-infinite model. Flow experiments are carried out to measure static pressures in the plenum chamber, to calculate the discharge coefficient, for a range of plenum absolute pressure-to-ambient pressure ratios. Detailed normalized Nusselt number contours have been presented, to identify the regions of high heat transfer augmentation locally, so as to help the designers in the organization of jet hole shapes and their patterns in an airfoil depending upon the active heat loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.