Abstract

Particle image velocimetry and a spectroscopy technique has been used to obtain information on the flow dynamics and flame thermal signatures of a fuel jet injected into a cross-flow of normal temperature and very high-temperature combustion air. Flame fluctuations were obtained using a high-speed camera and then performing fast Fourier transform on the signal. High-temperature air combustion has been demonstrated to provide significant energy savings, higher heat flux, and reduction of pollution and equipment size of industrial furnaces. The dynamics of flow associated with high temperature combustion air conditions (for mean velocity, axial strain rate and vorticity) has been obtained in two-dimensional using propane and methane as the fuels. The data have been compared with normal temperature combustion air case, including the nonburning case. A specially designed experimental test furnace facility was used to provide well-controlled conditions and allowed air preheats to 1100°C using regenerative burners. Four different experimental cases have been examined. The momentum flux ratio between the burning and nonburning conditions was kept constant to provide comparison between cases. The results provide the role of high-temperature combustion air on the dynamics of the flow, turbulence, and mixing under nonburning and combustion conditions. The data provide the direct role of combustion on flow dynamics, turbulence, and flame fluctuations. High-temperature combustion air at low-oxygen concentration showed larger flame volume with less fluctuation than normal or high-temperature normal air cases. High-temperature combustion air technology prolongs mixing in the combustion zone to enhance the flame volume, reduce flame fluctuations, and to provide uniform flow and thermal characteristics. This information assists in model validation and model development for new applications and technology development using high-temperature air combustion principles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.