Abstract
The present work is an experimental investigation of flow control over a square cylinder using an attached splitter plate. The experiments are mainly conducted at a Reynolds number of 485. A splitter plate of varying length from 0 to 6 times of the cylinder width is attached to the rear side of the square cylinder to control the flow. The thickness of the splitter plate is kept constant at 10% of cylinder width. The flow interference of a square cylinder with an attached splitter plate is observed using PIV, Hot wire and flow visualization techniques. The primary focus is given on the flow structure and related forces. From the experiments, it has been observed that a secondary vortex appears at the tail edge of the plate after a particular length of the splitter plate. This vortex rotation is opposite to the main vortex and it influences the primary vortex shedding as well as shear layer formation. As a result, the plate modifies the wake size and flow structure behind the cylinder. The drag coefficient and the Strouhal number decrease with an increase in splitter plate length. A correlation is found between the splitter plate length, Reynolds number, and the drag coefficient. The effect of the splitter plate length on the flow field is also studied in terms of velocity, vorticity, streamlines, recirculation length, and turbulence statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.