Abstract

Turbulent flow between a flexible wall and a solid surface containing a backward-facing step (BFS) was investigated using digital particle image velocimetry and high-speed photography. Stationary sheet of paper under tension was positioned above the solid surface in proximity to the BFS. The incoming air flow emerged from a planar nozzle that was located in the solid wall upstream of the BFS. Flows corresponding to two values of the Reynolds number (3,000 and 3,600) based on the step height and the maximum flow velocity at the step location were characterized in terms of patterns of time-averaged velocity, out-of-plane vorticity, streamline topology, and turbulence statistics. In addition, paper sheet oscillation was characterized using high-speed photography. For the control case of a solid upper wall with the geometry that represented the time-averaged paper profile, hydrodynamic frequencies were characterized using unsteady pressure measurements. Frequencies of the natural vibration modes of the paper sheet were well separated from the hydrodynamic frequencies corresponding to the oscillations of the shear layer downstream of the BFS. As the inflow velocity increased, the paper sheet was pulled closer to the solid surface, which resulted in increased confinement of the incoming jet. The flow reattachment length calculated on the basis of time-averaged flow patterns increased with the increasing Reynolds number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.