Abstract

An experimental system that consisted of gas mixing equipment, a sensor detection system, a data acquisition device, and an electric spark ignition device was set up to investigate fuel/air deflagration flame propagation and quenching processes through a crimped-ribbon flame arrester in an enclosed horizontal pipe. Deflagration suppression experiments showed that when the concentration of flammable gas was close to the stoichiometric ratio, the evolution processes of explosion pressure for the propane-air and ethylene-air premixed gases in the pipe diameter (DN32–DN400) were similar and could be divided into four stages: isobaric combustion, slow pressure rise, quick pressure rise, and pressure oscillation. However, the explosion duration of the hydrogen-air premixed gas was relatively short, and the peak explosion pressure was high. The pressure rose quickly after the isobaric combustion stage. Therefore, the process can be divided into three stages in the pipe diameter (DN15–DN150). Deflagration speed results indicated that the propane-air flame speed initially increased and eventually decreased along with increases in the pipe diameter (DN32–DN400); however, the ethylene-air flame speed gradually increased with the increase of the pipe diameter (DN80–DN400). No notable pattern of change in the hydrogen-air flame speed was observed in the pipe diameter (DN15–DN150). The maximum propane-air flame speed occurred at 5% concentration. The maximum flame speed for ethylene-air and hydrogen-air happened when the mixture was close to stoichiometric ratio. Under the conditions of the same size of experimental tube configuration and the same ignition distance but different pipe lengths, or the same pipe length but different ignition distances, experimental results showed that the flame arrester successfully stopped the flames at high flame speed and low explosion pressure, but failed at low flame speed and high explosion pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call