Abstract

The computational predictions for the imaging potential of the second harmonic produced by finite amplitude distortion were investigated with a simple experiment. A focused transducer containing concentric 2.5 MHz and 5.0 MHz elements was used to obtain a sequence of radio-frequency (r-f) backscattered signals using a tissue equivalent phantom. The 2.5 MHz element was used as the transmitter and the 5.0 MHz element was used as the receiver. At 0.68 cm in front of the geometric focal point of the transducer, the phantom contained a 0.6 cm diameter cylindrical volume which contained no scatterers. Each of these r-f signals was then processed to produce the corresponding fundamental (2.5 MHz-centered) and second harmonic (5.0 MHz-centered) envelopes. The contrast resolution obtained for the scatterer-free or cyst region of the envelopes was compared against the computed prediction and good agreement was obtained. The results of this experiment also suggest that the simple one-pulse scheme may be adequate for second harmonic imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.