Abstract

The present work deals with evaluation of exergetic efficiency (ηII) of 3 side concave dimple roughened solar air heater duct system and the results were compared with 1 side roughened system experimentally and theoretically. Exergy analysis uses quality of useful energy i.e., what fraction of solar radiation is actually being converted into useful heat gain of air leaving beside possible losses. Experiments were performed under actual outdoor condition in open sun and relevant input data were recorded for exergy evaluation. Each day’s data was recorded under different sets of parameters viz., Reynolds number (Re) 2500–13500, relative roughness pitch (p/e) 8–15, relative roughness height (e/Dh) 0.018–0.045 and dimple’s depth to diameter ratio (e/d) 1–2. Variation in exergetic efficiency with Reynolds number and rise in temperature parameter (To-Ti)/I at varying p/e, e/Dh and e/d reveals that as Reynolds number changes, both 1 and 3 side roughness shows maximum exergetic efficiency at same Re but 1 side roughened duct shows maximum exergetic efficiency at (To-Ti/I) of 0.0172, 0.0125 and 0.017 for different p/e, e/Dh and e/d respectively. For 3 side roughened duct, maximum exergetic efficiency was seen at (To-Ti/I) of 0.023, 0.0212 and 0.022 for different p/e, e/Dh and e/d respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.