Abstract

Cavitation phenomenon is basically a process formation of bubbles of a flowing liquid in a region where the pressure of the liquid falls below its vapour pressure and it is the most challenging fluid flow abnormalities leading to detrimental effects on both the centrifugal pump discharge characteristics as well as physical characteristics. In this low pressure zones are the first victims of cavitation. Due to cavitation pitting of impeller occurs and wear of internal walls of pumps occurs due to which there is creation of vibrations and noize are there. Due to this there is bad performance of centrifugal pump is there. Firstly, description of the centrifugal pump with its various parts are described after that pump characteristics and its important parameters are presented and discussed. Passive discharge (flow rate) control methods are utilized for improvement of flow rate and mechanical and volumetric and overall efficiency of the pump. Mechanical engineers is considering an important phenomenon which is known as Cavitation due to which there is decrease in centrifugal pump performance. There is also effect on head of the pump which is getting reduced due to cavitation phenomenon. In present experimental investigation the cavitation phenomenon is studied by starting and running the pump at various discharges and cavitating conditions of the centrifugal pump. Passive discharge (flow rate) control is realized using three different impeller blade leading edge angles namely 9.5 degrees, 16.5 degrees .and 22.5 degrees for reduction in the cavitation and increase the of the centrifugal pump performance at different applications namely, domestic, industrial applications of the centrifugal pump.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.