Abstract

Abstract Energy storage is a global critical issue and important area of research as most of the renewable sources of energy are intermittent. In this research work, recently emerged inorganic nanomaterial (MXene) is used for the first time with paraffin wax as a phase change material (PCM) to improve its thermo-physical properties. This paper focuses on preparation, characterization, thermal properties and thermal stability of new class of nanocomposites induced with MXene nanoparticles in three different concentrations. Acquired absorbance (UV-Vis) for nanocomposite with loading concentration of 0.3 wt.% of MXene achieved ~39% enhancement in comparison with the pure paraffin wax. Thermal conductivity measurement for nanocomposites in a solid state is performed using a KD2 PRO decagon. The specific heat capacity (cp) of PCM based MXene is improved by introducing MXene. The improvement of cp is found to be 43% with 0.3 wt.% of MXene loaded in PCM. The highest thermal conductivity increment is found to be 16% at 0.3 wt.% concentration of MXene in PCM. Decomposition temperature of this new class of nanocomposite with 0.3 wt.% mass fraction is increased by ~6%. This improvement is beneficial in thermal energy storage and heat transfer applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.