Abstract
In the turning operation, vibration is a frequent problem, which affects the result of the machining and in particular the surface finish. Tool life is also influenced by vibrations. Severe acoustic noise in the working environment frequently results as a dynamic motion between the cutting tool and the work piece. In all cutting operations like turning, boring and milling vibrations are induced due to deformation of the work piece. In the turning process, the importance of machining parameter choice is increased, as it controls the surface quality required. Tool overhang is a cutting tool parameter that has not been investigated in as much detail as some of the better known ones. It is appropriate to keep the tool overhang as short as possible; however, a longer tool overhang may be required depending on the geometry of the work piece and when using the holeturning process in particular. In this study, we investigate the effects of changes in the tool overhang in the external turning process on both the surface quality of the work piece and tool wear. For this purpose, we used work pieces of AISI 1050 material with diameters of 20, 30, and 40 mm; and the surface roughness of the work piece were determined through experiments using constant cutting speed and feed rates with different depth of cuts (DOCs) and tool overhangs. We observed that the effect of the DOC on the surface roughness is negligible, but tool overhang is more important. The deflection of the cutting tool increases with tool overhang. Two different analytical methods were compared to determine the dependence of tool deflection on the tool overhang. Also, the real tool deflection values were determined using a comparator. We observed that the tool deflection values were quite compatible with the tool deflection results obtained using the second analytical method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.