Abstract

With the rapid development of removal technology of materials, manufacturing methods of advanced materials with highly flexible shape has been improved. Electro-chemical machining (ECM) is one of the most advanced manufacturing methods for not only manufacturing the high hardness metal with flexible profiles, but also provides a better solution to surface roughness of finished products and rate of material removal in the comparison with other advanced manufacturing methodologies such as electric discharge machining (EDM). However, there are many parameters involving to the ECM process such as velocity of the electrode, pressure of water, voltage, frequency and pulse of the current. Therefore, a set of optimization parameters for machining process of a material type is necessary to provide the best solution in industrial applications. This research focuses on investigating an optimal set of process parameters of the ECM machine by using the surface response methodology (SRM). A database of process parameters is generated by machining and minimizing the surface roughness of the SS AISI 316 stainless steel via suing the copper electrode. Then, an objective function (or regression function) is generated by applying the SRM to the selected database. Finally, genetic algorithm is used to achieve the optimal process parameters. Experiments are implemented with achieved processing parameters to analyze and validate the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.