Abstract

AbstractEclogite plays an important role in mantle convection and geodynamics in subduction zones. An improved understanding of processes in the deeper levels of subduction zones and collision belts requires information on eclogite rheology. However, the deformation processes and associated fabrics in eclogite are not well understood. Incompatible views of deformation mechanism have been proposed for both garnet and omphacite. We present here deformation behaviour of eclogite at temperatures of 1027–1427 °C, confining pressures of 2.5–3.5 GPa, and strain rates of 1 × 10−5 s−1 to 5 × 10−4 s−1. We obtained a power‐law creep for the high temperature and pressure deformation of a ‘dry’ eclogite (50 vol.% garnet, 40% omphacite and 10% quartz) with A = 103.3 ± 1.0, n = 3.5 ± 0.4, ΔE =403 ± 30 KJ mol−1 and ΔV = 27.2 cm3 mol−1. The two principal minerals of eclogite have greatly different strengths. Progressive increase of garnet results in a smooth increase in strength. Analysis by electron back‐scattered diffraction shows that: (1) garnet displays pole figures with near random distributions of misorientation angle under both dry and wet conditions; (2) omphacite shows pronounced lattice preferred orientations (LPOs), suggesting a dominant dislocation creep mechanism. Further investigation into the water effects on eclogite show: (3) water content does not influence the style of omphacite fabric but increases slightly the fabric strength; (4) grain boundary processes dominate the deformation of garnet under high water fugacity or high shear‐strain conditions, yielding a random LPO similar to that of non‐deforming garnet, despite the strong shape preferred orientation (SPO) observed. {110} [001] slip may dominate the deformation of rutile. Quartz displays complicated and inconsistent LPOs in eclogite. These results are remarkably similar to observations from deformed eclogites in nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.