Abstract

Dispersion of fluids flowing through porous media is an important phenomenon in miscible displacement. Dispersion causes instability of miscible displacement flooding; therefore, to obtain and maintain the miscibility zone, the porous medium dispersivity should be considered in displacing fluid volume calculation. Many works have been carried out to investigate the dispersion phenomenon in porous media in terms of theory, laboratory experiments and modeling. What is still necessary is to study the effects of presence of fracture in a porous medium on dispersion coefficient or dispersivity. In this work dispersion phenomenon in a fractured porous medium has been investigated through a series of miscible displacement tests on homogeneous sandstone core samples. Tests were repeated on the same core samples with induced fracture in the flow direction. The effects of fracture on miscible displacement flooding have been studied by comparison of the results of dispersion tests in the absence and presence of fracture. In the presence of fracture, breakthrough time reduced and the tail of effluent S-shaped curve smeared. Moreover, the slope of S-shaped curve at 1 pore volume of injected fluid was lower than homogeneous case which means dispersion coefficient increased. The results presented in this work provide an insight to the understanding of dispersion phenomenon for modeling of miscible displacement process through naturally fractured reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call