Abstract
Labyrinth weirs provide higher discharge capacity than conventional weirs, with the ability to pass large flows at comparatively low heads. Labyrinth weirs are primarily used as spillways for dams where the spillway width is restricted. In recent years, many research investigations have considered the hydraulic performance of labyrinth weirs, particularly as dependent on the geometric features. The previous work has improved the design basis for such weirs. However, their design still requires experimentally derived and generalized performance curves. It is especially important to observe the behavior of the weir nappe to ensure the design provides hydraulic optimization and to account for pressure fluctuations, possible vibrations, resonance effect, noise and flow surging. In the present study, discharge coefficients were experimentally determined for both circular labyrinth weirs and sharp crested trapezoidal labyrinth weirs of varying side wall angle (α). Additional studies were completed with nappe breakers included to reduce the impact of vibration on the labyrinth weirs. In general, the test data indicated that nappe breakers placed on the trapezoidal labyrinth weirs and circular labyrinth weirs reduced the discharge coefficient by up to 4% of the un-amended weir.
Highlights
Labyrinth weirs provide an effective means to increase the spillway discharge capacity of dams and are often considered for renovation projects required due to an increase in expected flood inflow to the reservoir of an existing dam
The purpose of this study is to systematically investigate the discharge capacity of sharp-crested trapezoidal and circular labyrinth weir with and without nappe breaker, using a broad range of experiments, and considered together with the other effective dimensionless parameters
Experiments were repeated by placing nappe breakers on all models of the labyrinth weirs
Summary
Labyrinth weirs provide an effective means to increase the spillway discharge capacity of dams and are often considered for renovation projects required due to an increase in expected flood inflow to the reservoir of an existing dam. The thickness of nappe and depth of the tail water do not affect the discharge capacity of the labyrinth weir in the fully aerated flow condition. In this case, the labyrinth weir acts as a vertical cross section of the linear weir. As the water level above the labyrinth weir increases and the tail water rises, the nappe becomes partially aerated (adhering to the weir wall) and the discharge coefficient is reduced [3] [4] During this phase, there may be alternating conditions of fully aerated and adhered nappe flow. The negative pressures under water nappe increase the discharge capacity of the spillway, the associated vibration and resonance may negatively impact the safety of the structure
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.