Abstract

The beneficial aspects of enhanced or extended heat transfer surfaces may be offset if operated under fouling conditions. In this article, preliminary experimental results for crystallization fouling of CaSO4 solutions onto surfaces with different structures are reported. Flat stainless steel plates (50 mm × 59 mm) with “V”-shaped grooves on the side of fluid flow were used as heat transfer surfaces. Experiments were carried out under both clean and fouling conditions to discern how the same surface structures perform under such circumstances. In addition, the impact of both the direction of grooves with respect to fluid flow (crossed, longitudinal, and mixed flow grooves) and the groove dimensions has also been investigated. Fouling trends are discussed in terms of induction time and fouling rate. Significant differences have been found for the various flow conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.