Abstract
Crystal blockage of tunnel drainage pipes is one of the main causes of problems such as lining cracking and water leakage. The study of the crystal development rule is of great significance for the design of tunnel drainage systems and the long-term safety of tunnel support structures. In this paper, a series of experimental studies on the crystallization development law of drain pipes are conducted. The effects of the connection method of the drain, the diameter of the pipe, the spacing of the circular drain, and the material of the drain on the crystallization development pattern are investigated. The results show that the groundwater environment has a great influence on the crystallization development of the drain pipe. As the drain diameter and the spacing between two adjacent circular drains increased, the time for complete blockage of the drain is prolonged. The rate of crystallization on the drainage pipe can be effectively reduced by changing the material of the drainage pipe from polyamide (PA) to polypropylene (PP). The present study provides a reference for research work related to crystallization blockage in tunnel drainage pipes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.