Abstract

The laminar convective heat transfer behavior of CuO nanoparticle dispersions in water with three different particle sizes (23 nm, 51 nm, and 76 nm) is investigated experimentally in a flow loop with constant heat flux. The main purpose of this study is to evaluate the effect of particle size on convective heat transfer in laminar region. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid, and the nanofluid with 23nm particles shows higher heat transfer coefficient than nanofluids containing the other two particle sizes about 10% under the same Re. Based on the effective medium approximation and the fractal theory, the effective thermal conductivity of suspension is obtained. It is shown that if the new effective thermal conductivity correlation of the nanofluids is used in calculating the Prandtl and Nusselt numbers, the new correlation accurately reproduces the convective heat transfer behavior in tubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call