Abstract

In this work the effects of specimen size and type on creep crack growth rates in stainless steel are examined. Experiments have been carried out on high constraint compact tension specimens (CT) and low constraint centre cracked panels (CCP) of ex-service 316H stainless steel. All testing was carried out at 550°C. Constraint effects have been observed in the data, with the large CT specimens having the fastest crack growth rate and the small CCP specimens the slowest. These trends are consistent with those that would be predicted from two parameter (C*–Q) theories. However, it is found that a constraint dependent creep crack growth model based on ductility exhaustion overpredicts the constraint dependence of the crack growth data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.