Abstract

Hydrogen is the strongest candidate to become the future fuel of the world to meet net-zero targets while it cannot be found in nature in pure form and the most major occurrence is in water or carbon-based forms. Therefore, external energy is needed to retrieve hydrogen in pure form where natural gas reforming is the most common method for over 90% of hydrogen production worldwide with carbon footprint followed by water electrolysis which is environmentally friendly. As clean methods PEM and AEL electrolysis are mature technologies while AEM takes increased attention with its unique dry cathode technology. This study examines how a nature-influenced (Bioinspired) and a serpentine flow channel design affects PEM electrolyzer and AEM electrolyzer cell functionality. The performance of the electrolyzers is assessed in terms of experimental polarization curves. It was decided to utilize Sustainion® XA-9 Alkaline Ionomer Powder as the ionomer solution and Fumasep FAS-50 as the membrane. The laminar flow analysis is performed using COMSOL Multiphysics. The efficiency of the PEM electrolyzer is 71% with the serpentine flow, while the efficiency is 73% with the biomimetic flow. The efficiency of the AEM water electrolyser is 25% using the same design. The low performance in AEM was interpreted as the inability to distribute the catalyst homogeneously on the membrane surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.