Abstract

This study investigated the effect of fuel injection pressure (20–80MPa) on atomization and combustion characteristics using a stationary combustor with an intermittent supply of liquid fuel. In the atomization experiments, spray tip penetration and spray width increased, and the Sauter mean diameter of droplets decreased with an increase in the fuel injection pressure. In the combustion experiments, the OH emission intensity and combustion gas temperature upstream of the furnace increased with the fuel injection pressure, whereas nitrogen oxides emissions were reduced. The results demonstrate that high-pressure pulse spray combustion can reduce NOX emissions and enhance the combustion load by an increase in the fuel injection pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.