Abstract

In this paper, an innovative dual-mode multifunction heat pipe type chemisorption ice maker was designed, in which the compound adsorbent of activated carbon–CaCl 2 was used to improve the mass and heat transfer performance of adsorbent. For this test unit, the heating, cooling and heat recovery processes between two adsorbent beds were performed by multifunction heat pipes without additional power consumption. Two operation modes were possible for the advanced chemisorption refrigeration system. The first operation mode was a highly efficient mass and heat recovery sorption cycle where driving heat source temperature was about 145 °C. The second operation mode was a two-stage heat recovery sorption cycle in which available driving heat source temperature was about 103 °C. The experimental results showed that the first operation mode cycle can increase the coefficient of performance (COP) by 69% when compared with basic cycle. The second operation mode cycle can operate effectively with relatively low-grade generation temperature, and the performance of the two-stage heat recovery cycle was improved by more than 23% when compared with conventional two-stage cycle under the same generation temperature of 103 °C and cooling water temperature of 30 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.