Abstract

An indirect-type forced convection solar dryer implementing a phase-changing material (PCM) as the energy-storing medium was designed, fabricated, and investigated in this study. The effects of changing the mass flow rate on the valuable energy and thermal efficiencies were studied. The experimental results showed that the instantaneous and daily efficiencies of the indirect solar dryer (ISD) increased with the initial increase in mass flow rate, beyond which the change is not prominent both with and without using the PCM. The system consisted of a solar energy accumulator (solar air collector with a PCM cavity), a drying compartment, and a blower. The charging and discharging characteristics of the thermal energy storage unit were evaluated experimentally. It was found that after using PCM, drying air temperature was higher than ambient air temperature by 9-12 ℃ after sunset for 4h. Using PCM accelerated the process by which Cymbopogon citratus was effectively dried between 42 and 59°C of drying air. Energy and exergy analysis of the drying process was performed. The daily energy efficiency of the solar energy accumulator reached 35.8%, while the daily exergy efficiency reached 13.84%. The exergy efficiency of the drying chamber was in the range of 47-97%. A free energy source, a large reduction in drying time, a higher drying capacity, a decrease in mass losses, and improved product quality all contributed to the proposed solar dryer's high potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.