Abstract

AbstractSmart materials that are directly embedded in the rotor blade structure are an attractive concept for active blade control. A promising approach is the use of anisotropic piezoelectric strain actuators embedded in the rotor blade skin. Especially in Europe and the US this concept has been intensively investigated over the past years. A major drawback of all configurations studied so far is the high operation voltage of up to 2,000V of state of the art piezoelectric actuators. Within the Green Rotorcraft Project of the European Joint Technology Initiative Clean Sky, a new approach with a low voltage piezoelectric actuation system is investigated to demonstrate the feasibility of this technology.A first major step in this direction was completed by conducting a centrifugal test with a model rotor blade. The objective of the centrifugal test was to demonstrate the performance of the actuation system and the structural concept under centrifugal loads by showing that the expected twist deformation can be achieved at the nominal rotation speed and different actuation frequencies.It was demonstrated that the new actuation system is capable of operating under representative centrifugal loads. In comparison to state-of-the-art actuators (operation voltage 500V to +1500V) the new actuation system (operation voltage -20V to 120V) exhibits higher active twist performance per active area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.