Abstract

A novel all-optical nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) to return-to-zero DPSK (RZ-DPSK) format conversion scheme is proposed and experimentally demonstrated. This conversion is based on nonlinear polarization rotation of a semiconductor optical amplifier. Experimental results show that a 10 Gb/s RZ-DPSK signal with an extinction ratio over 10 dB can be converted with a tunable duty cycle from 33% to 66%, and the ER of the converted signal decreases with the increase in the duty cycle. For all cases of different duty cycles, the converted signals experience a -0.4 to -1.2 dB power penalty at a bit error rate of 10(-9) compared with the original signal. In addition, the spectra show that this format conversion is a wavelength-preserved operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call