Abstract

Modern gas turbine development is being driven by the often-incompatible goals of increased efficiency, better durability, and reduced emissions. High turbine inlet temperatures and ineffective cooling at the trailing edge of a first-stage stator vane lead to corrosion, oxidation, and thermal fatigue. Observations of this region in engines frequently reveal burn marks, cracks, and buckling. Fundamental studies of the importance of trailing edge heat transfer to the design of an optimal cooling scheme are scarce. An experimental study of an actively cooled trailing edge configuration, in which coolant is injected through a slot, is performed. Trailing edge heat transfer and aerodynamic measurements are reported. An optimum balance between maximizing blade row aerodynamic efficiency and improving thermal protection at the trailing edge is estimated to be achieved when blowing ratios are in the range between 2.1% and 2.8%. The thermal phenomena at the trailing edge are dominated by injection slot heat transfer and flow physics. These measured trends are generally applicable over a wide range of gas turbine applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call